2011
DOI: 10.1007/978-3-642-18466-6_38
|View full text |Cite
|
Sign up to set email alerts
|

Population-Based Metaheuristics for Tasks Scheduling in Heterogeneous Distributed Systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
5
0
1

Year Published

2011
2011
2019
2019

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(6 citation statements)
references
References 6 publications
0
5
0
1
Order By: Relevance
“…Algunos de los métodos de búsqueda local para la planificación, basados en el enfoque de la vecindad son: movimiento de la base con búsqueda local [48] , intercambio de base basado en búsqueda local [49] y porúltimo se cita al método de Búsqueda Variable del Vecindario -Variable Neighborhood Search (VNS) [50].…”
Section: A Enfoque De Heurística Basada En Búsqueda Localunclassified
“…Algunos de los métodos de búsqueda local para la planificación, basados en el enfoque de la vecindad son: movimiento de la base con búsqueda local [48] , intercambio de base basado en búsqueda local [49] y porúltimo se cita al método de Búsqueda Variable del Vecindario -Variable Neighborhood Search (VNS) [50].…”
Section: A Enfoque De Heurística Basada En Búsqueda Localunclassified
“…Other approximate procedures such as gradient descent are not directly applicable to the problem at hand since the optimization problem presents a non-differentiable, non-continuous function. However, nature-inspired search algorithms such as Genetic Algorithms (GAs), ant-colony optimization, and particleswarm optimization, which follow a guided randomized search, are sometimes more effective than traditional heuristics in solving similar single and multi-objective workflow scheduling problems [24], [25], [26], [27]. In this article, we also explore GAs for finding an approximate solution to the optimization problem.…”
Section: Problem Formulationmentioning
confidence: 99%
“…Meta-heuristics have been widely used to address the task scheduling problem [24], [25], [26], [27]. Most of the approaches are nature inspired and rely on GA [28], ant colony optimization [49], particle swarm optimization [50] or simulated annealing [51] techniques to search for sub-optimal solutions.…”
Section: Related Workmentioning
confidence: 99%
“…Genetic Algorithms (GA) proved to give good results [37,38] when scheduling Grid applications. It comes with no surprise that they have been widely proposed for Cloud systems also.…”
Section: Related Work On High Available Systems and Cloud Schedulingmentioning
confidence: 99%