The distribution of genetic diversity has potential to inform conservation efforts but is rarely incorporated when conservation status is assigned to a species. These data can be beneficial to the conservation assessment process by providing information on subpopulations, gene flow and effective population sizes, thus achieving more successful assessments. In order to obtain a better understanding of the patterns of genetic variation and their relationship to conservation in the fragmented flora of Madagascar, this study assessed genetic diversity among and within Delonix s.l. (Leguminosae) using AFLP markers. The genetic diversity of eight species of Delonix s.l.(covering 79 sample sites and 254 individuals) showed a range of values (25-61% for polymorphic loci, and 0.076-0.192 Shannon's Index). Results from an analysis of molecular variance (AMOVA) suggest that a majority of the genetic variance is attributed to variation within species (87%), which is also supported by a principle coordinate analysis of genetic distances between sites. The results were used to compare the genetic difference between species of different threat status and show that even closely related species with the same IUCN threat status differ in their genetic structure, probably arising from differences in life history traits, pollen and seed dispersal, and fragmentation. Species that are recently affected by habitat destruction and fragmentation are likely to be at high potential risk of genetic erosion contributing to their ongoing decline. Thus, genetic variation should be taken into consideration in conservation assessments, whenever possible, to provide accurate and targeted conservation recommendations in order to achieve more successful conservation outcomes.