Voltage-gated ion channels are large transmembrane proteins that enable the passage of ions through their pore across the cell membrane. These channels belong to one superfamily and carry pivotal roles such as the propagation of neuronal and muscular action potentials and the promotion of neurotransmitter secretion in synapses. In this review, we describe in detail the current state of knowledge regarding the evolution of these channels with a special emphasis on the metazoan lineage. We highlight the contribution of the genomic revolution to the understanding of ion channel evolution and for revealing that these channels appeared long before the appearance of the first animal. We also explain how the elucidation of channel selectivity properties and function in non-bilaterian animals such as cnidarians (sea anemones, corals, jellyfish and hydroids) can contribute to the study of channel evolution. Finally, we point to open questions and future directions in this field of research.
KEY WORDS: Voltage-gated ion channels, Animal evolution, Ion selectivity
Introduction: the superfamily of voltage-gated ion channelsThis review aims to cover and clarify the evolution and diversification of metazoan voltage-gated ion channels, particularly at the beginning of multicellularity in the lineage leading to Metazoa and at the emergence of nervous systems. Voltage-gated ion channels are imperative for neuronal signaling, muscle contraction and secretion, and are thought to play a critical role in the evolution of animals (Hille, 2001). Nonetheless, these channels are also found in prokaryotes and viruses, although their roles in these organisms are largely unknown (Martinac et al., 2008;Plugge et al., 2000). The superfamily of voltage-gated ion channels is characterized by the ability to rapidly respond to changes in membrane potential (hence 'voltage-gated'), which results in selective ion conductance. This ion channel superfamily includes voltage-gated potassium channels (K V s), voltage-gated calcium channels (Ca V s) and voltage-gated sodium channels (Na V s). Their α-subunits are composed of four domains (DI-IV), with each domain containing six transmembrane segments (S1-S6; Fig. 1) (Noda et al., 1984;Noda et al., 1986;Guy and Seetharamulu, 1986;Tanabe et al., 1987). Voltage-dependent activation is enabled by conserved positively charged residues at every third position in S4 (voltage sensor) of the four domains, which move outwards upon changes in membrane potential (Noda et al., 1984; Catterall, 1986;Guy and Seetharamulu, 1986), inducing a conformational change that results in opening of the channel pore (Armstrong and Bezanilla, 1974;Stühmer et al., 1989;Papazian et al., 1991;Yang et al., 1996). The pore is formed by the segments S5 and S6, and the selectivity to specific ions is enabled by the selectivity filter, which is composed of conserved residues, specific for the ion conducted by the channel, and these residues are situated at the pore-lining loops (p-loops) connecting S5 to S6 in the four domains ( ...