We experimentally examine pressure-driven flows of 1%, 3%, and 5% dilute suspensions over and through a porous media model. The flow of non-colloidal, non-Brownian suspensions of rigid and spherical particles suspended in a Newtonian fluid is considered at very low Reynolds numbers. The model of porous media consists of square arrays of rods oriented across the flow in a rectangular channel. Systematic experiments using high-spatial-resolution planar particle image velocimetry (PIV) and index-matching techniques are conducted to accurately measure the velocity measurements of both very dilute and solvent flows inside and on top of the porous media model. We found that for 1%, 3%, and 5% dilute suspensions the fully-developed velocity profile inside the free-flow region are well predicted by the exact solution derived from coupling the Navier-Stokes equation within the free flow-region and the volume-averaged Navier Stokes (VANS) equation for the porous media. We further analyze the velocity and shear rate at the suspension-porous interface and compare these data with those of pure suspending fluid and the related analytical solutions. The exact solution is used to define parameters necessary to calculate key values to analyze the porous media/fluid interaction such as Darcy velocity, penetration depth, and fractional ratios of the mass flow rate. These parameters are comparable between the solvent, dilute suspensions, and exact solution. However, we found clear effects between the solvent and the suspensions which shows different physical phenomenon occurring when particles are introduced into a flow moving over and through a porous media.