Purpose
The purpose of this paper is to study the influence of the porous structure on the maximum stress and modulus of elasticity of the specimens which are fabricated by rapid prototypes. According to the experimental results, modify the theoretical formula of elastic modulus.
Design/methodology/approach
The Objet Eden 250 was used to prepare the Vero White photosensitive resin samples with different porosity (ranges from 25 to 65 per cent) and different pore structures. The mechanical properties of different samples were numerically simulated and the formulas of the modulus of elasticity were established. Through the compression test, the performance of the specimen is compared and analyzed, and the theoretical elastic modulus formula is optimized.
Findings
With the increase of porosity, the maximum stress of honeycomb structure specimens decreases. The maximum stress of the honeycomb structure specimen with circular pore shape is higher than the hexagon cross-section while the hexahedron and octahedron structure are the arms (wall thickness between pores) with a square cross-section. The error comparison between the modulus of elasticity before and after the structure models regression analysis shows that after the regression analysis, the error of theoretical value and the actual value is between 0 and 14 per cent which is lower than the value before the regression analysis which was between 5 and 27 per cent.
Originality/value
The paper obtains rules of the influence of different porous structures which were fabricated by the Vero White photosensitive resin material on mechanical properties and higher prediction accuracy formula of elastic modulus. The conclusions provide a theoretical basis for Northeastern University, China, to reduce mass and mechanical properties prediction of load-bearing parts.