2012
DOI: 10.1002/ange.201202849
|View full text |Cite
|
Sign up to set email alerts
|

Porous Organic Alloys

Abstract: Poröse ternäre Cokristalle wurden durch chirale Erkennung zwischen organischen Käfigmolekülen erhalten. Ein Molekül, CC1, besetzt 50 % der Gitterpositionen, und zwei andere Moleküle, CC3 und CC4, besetzen fehlgeordnet die übrigen Positionen (siehe Bild). Es besteht ein lineares Verhältnis zwischen der Zusammensetzung und den Gitterparametern der Cokristalle.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
33
1

Year Published

2013
2013
2020
2020

Publication Types

Select...
9

Relationship

2
7

Authors

Journals

citations
Cited by 35 publications
(34 citation statements)
references
References 37 publications
0
33
1
Order By: Relevance
“…M.p. 347-348 8C (dec); NMR (400 MHz, [D 6 ]DMSO): d = 7.49 (s, 1 H; Ar-13-H), 7.19 (s, 1 H; Ar-6-H), 7.15 (dd, J = 7.6, 1.4 Hz, 2 H; olefin-16,18-H), 6.97-6.93 (m, 2 H; olefin-15,17-H), 6.92-6.86 (m, 4 H; Ar-3,4,8,9-H), 6.65 (dd, J = 7.7, 1.4 Hz, 2 H; Ar-2,10-H), 4.99 (dd, J = 6.0, 1.2 Hz, 2 H; bridgehead-5,7-H), 3.76 (s, 6 H; OCH 3 ), 3.73 ppm (s, 6 H; OCH 3 ); 13 C NMR (100 MHz, [D 6 ]DMSO): d = 153.9 (Ar-C-1,11), 147.9 (Ar-C-4a,7a), 143.2 (Ar-C-5a,6a), 141.0 (Ar-C-12a,13a), 137.7 (olefin-C-15,17/16,18), 137.4 (olefin-C-15,17/16,18), 132.9 (Ar-C-11a,14a), 125.1 (Ar-C-3,9/4,8), 117.0 (Ar-C-6), 115.8 (Ar-C-3,9/4,8), 112.4 (Ar-C-13), 110.8 (Ar-C-2,10), 87.7 (bridgehead-C-12,14), 56.2 (Ar-OCH3), 54.5 (bridgehead-OCH3), 49.1 ppm (bridgehead-C-5,7); IR (KBr pellet): ñ = 3436 (br, w), 3066 (w), 2961 (m), 2935 (m), 2833 (m), 1613 (w), 1583 (m), 1478 (s), 1439 (w), 1329 (m), 1267 (s), 1227 (w), 1212 (w), 1190 (w), 1141 (m), 1120 (w), 1105 (w), 1067 (m), 1030 (m), 942 (w), 906 (w), 793 (w), 778 (w), 755 (w), 735 (w), 698 (w), 668 (m), 636 (w), 588 (w), 564 cm À1 (w); MS (EI); m/z (%): 452 (7), 451 (32) [M + H] + , 450 (100) [M] + , 439 (5), 438 (11), 437(21), 436 (33), 435(7), 422 (5), 421 (12), 420(19), 419 (23), 418 (10), 417 (6), 407 (6), 406(8), 405 (14), 404(17), 403(15), 402(8), 401(7), 400 (5), 390 (5), 389(7), 388 (9), 387 (9), 386(7), 385 (5), 384 (5), 375 (6), 374 (6), 373 (6), 372(7), 371(6), 370 (6), 361 (5), 358 (5), 356 (5); elemental analysis calcd (%) for C 30 H 26 O 4 ·1. 5H 2 O: C 75.45, H 6.12; found: C 75.17, H 5.76.…”
mentioning
confidence: 99%
“…M.p. 347-348 8C (dec); NMR (400 MHz, [D 6 ]DMSO): d = 7.49 (s, 1 H; Ar-13-H), 7.19 (s, 1 H; Ar-6-H), 7.15 (dd, J = 7.6, 1.4 Hz, 2 H; olefin-16,18-H), 6.97-6.93 (m, 2 H; olefin-15,17-H), 6.92-6.86 (m, 4 H; Ar-3,4,8,9-H), 6.65 (dd, J = 7.7, 1.4 Hz, 2 H; Ar-2,10-H), 4.99 (dd, J = 6.0, 1.2 Hz, 2 H; bridgehead-5,7-H), 3.76 (s, 6 H; OCH 3 ), 3.73 ppm (s, 6 H; OCH 3 ); 13 C NMR (100 MHz, [D 6 ]DMSO): d = 153.9 (Ar-C-1,11), 147.9 (Ar-C-4a,7a), 143.2 (Ar-C-5a,6a), 141.0 (Ar-C-12a,13a), 137.7 (olefin-C-15,17/16,18), 137.4 (olefin-C-15,17/16,18), 132.9 (Ar-C-11a,14a), 125.1 (Ar-C-3,9/4,8), 117.0 (Ar-C-6), 115.8 (Ar-C-3,9/4,8), 112.4 (Ar-C-13), 110.8 (Ar-C-2,10), 87.7 (bridgehead-C-12,14), 56.2 (Ar-OCH3), 54.5 (bridgehead-OCH3), 49.1 ppm (bridgehead-C-5,7); IR (KBr pellet): ñ = 3436 (br, w), 3066 (w), 2961 (m), 2935 (m), 2833 (m), 1613 (w), 1583 (m), 1478 (s), 1439 (w), 1329 (m), 1267 (s), 1227 (w), 1212 (w), 1190 (w), 1141 (m), 1120 (w), 1105 (w), 1067 (m), 1030 (m), 942 (w), 906 (w), 793 (w), 778 (w), 755 (w), 735 (w), 698 (w), 668 (m), 636 (w), 588 (w), 564 cm À1 (w); MS (EI); m/z (%): 452 (7), 451 (32) [M + H] + , 450 (100) [M] + , 439 (5), 438 (11), 437(21), 436 (33), 435(7), 422 (5), 421 (12), 420(19), 419 (23), 418 (10), 417 (6), 407 (6), 406(8), 405 (14), 404(17), 403(15), 402(8), 401(7), 400 (5), 390 (5), 389(7), 388 (9), 387 (9), 386(7), 385 (5), 384 (5), 375 (6), 374 (6), 373 (6), 372(7), 371(6), 370 (6), 361 (5), 358 (5), 356 (5); elemental analysis calcd (%) for C 30 H 26 O 4 ·1. 5H 2 O: C 75.45, H 6.12; found: C 75.17, H 5.76.…”
mentioning
confidence: 99%
“…reported on the co‐crystallization of organic cage compounds in a binary or even ternary fashion to create porous organic alloys 10. 11 Very recently, this property was exploited to grow microporous cage crystals in mesoporous silica 12. Another example of “processable” porosity has been demonstrated by our group:13 various cage compounds, which are highly porous in the bulk, can be deposited as thin films on quartz crystal microbalances (QMBs) by spray‐coating.…”
Section: Methodsmentioning
confidence: 99%
“…The numerous reaction sites can be transformed quantitatively, which greatly simplifies the purification procedure. This method provides a rapid way to enrich the organic‐cage‐compound family and opens opportunities, for example, to form porous organic alloys with versatile functionality 11. It is worth mentioning that the post‐synthetic functionalization of extended non‐soluble porous frameworks by the formation of covalent bonds still is a difficult task 23.…”
Section: Methodsmentioning
confidence: 99%
“…24 It was also processed into composite membranes, 25 thin lms for molecular sieving, 26 and used to form organic alloys. 27 Simple chemical modication of CC3 has led to new proton conductors 28 and porous molecular crystals that are exceptionally stable under both acidic and basic conditions. 29 Given the wide range of potential applications, it was desirable to determine a scalable and efficient route to CC3 to improve its commercial viability and, by extension, to allow the scale up of other POCs.…”
Section: Introductionmentioning
confidence: 99%