To determine whether it is possible to vertically augment bone utilizing a block graft from compressed titanium granules mainly used previously for contained bone defects and to determine whether there exists a difference in osteoconductive properties between the white and the grey granules. In 11 rabbits, 4 titanium blocks were inserted on each rabbit's skull bone according to a randomized scheme. These blocks were made from standardized compressed titanium granules. Type A: PTG grey, small granules (Pourus Titanium Granules, Tigran, Malmö, Sweden); Type B: PTG grey, large granules; Type C: PTG white, small granules; Type D: PTG white large granules. After 12 weeks, the animals were sacrificed and specimens were collected for histology and μCT scanning. From both the μCT and histology, it can be said that bone formation was successfully achieved for all groups, and the granules maintained their volume. The histomorphometric BA (bone area) evaluation in the entire grafted area presented that there were no statistical differences between all groups tested. The lowest 1/4 BA in contact with the rabbit skull presented that groups A and C presented the highest mean BA, and group A presented significantly higher BA than that of group D (p = 0,049). No significant differences were noted between groups A, B and C. Within the limitation of this study, no differences were noted between small white or grey PTG blocks. The large granules presented less bone ingrowth area compared to the small granules and this trend was regardless of the different PTG types. The entire grafted area was not filled with new bone suggesting that bone migration occurred mostly from the existing cortical bone side suggesting contact osteogenesis.