Parallel robots have natural advantages for many applications thanks to their high rigidity, high accuracy, low inertia of the moving parts and lightness, etc. The goal of this study has performed motion control, the kinematic and workspace analyses of a Delta-type parallel robot with 3 degrees of freedom (3-DOF). Delta-type parallel actual parameter values were used in the motion control and analyses. Forward and inverse kinematics analysis, as well as workspace analysis of the robot, were carried out. In addition, the motion control of the robot is actualized in Cartesian space. In order for the delta-type parallel robot to have zero oscillation and to have a robust structure against external disturbances, the Sliding Mode Control (SMC) method was preferred. As a result, the motion control, kinematics, and workspace analyses of the delta-type parallel robot were realized and examined.