SUMMARYSeveral in vitro and in vivo studies indicate that application of high doses of dominant T cell epitopes can induce a state of antigen-specific non-responsiveness (anergy). In the present study, we developed a murine model of an allergic immune response to Bet v 1, the major birch pollen allergen. Mice were sensitized by injection of rBet v 1 and the allergic state was proven by the presence of allergen-specific IgE and positive immediate-type skin tests to Bet v 1. In epitope mapping experiments, an immunodominant T cell epitope of Bet v 1 in BALB/c mice was identified by the use of overlapping peptides. This peptide (BV139) was subsequently employed for treatment. Two tolerization protocols were used: in one approach, the peptide was administered to naive mice before immunization (group BV139-S), in the second, already sensitized mice were treated (S-BV139). The results demonstrated that administering high doses of the dominant T cell epitope of Bet v 1 profoundly diminished T cell proliferation to the peptide in the BV139-S group, and to the peptide as well as to the whole protein in the S-BV139 group. Skin test reactivity to Bet v 1 was reduced in the BV139-S group. However, no differences in terms of specific antibody production between treated and untreated mice could be observed. This study provides evidence that administration of dominant T cell epitopes can down-regulate the allergenspecific T cell response. Proceeding on the assumption that the T lymphocyte response to allergens is crucial for the induction and maintenance of the allergic disease, a modulation of the immune response to allergens by treatment with T cell epitope peptides could represent a promising concept for immunotherapy in the future.