2021
DOI: 10.1186/s13661-021-01491-z
|View full text |Cite
|
Sign up to set email alerts
|

Positive ground states for nonlinearly coupled Choquard type equations with lower critical exponents

Abstract: We study the coupled Choquard type system with lower critical exponents $$ \textstyle\begin{cases} -\Delta u+\lambda _{1}(x)u=\mu _{1}(I_{\alpha }* \vert u \vert ^{ \frac{N+\alpha }{N}}) \vert u \vert ^{\frac{\alpha }{N}-1}u+\beta (I_{\alpha }* \vert v \vert ^{ \frac{N+\alpha }{N}}) \vert u \vert ^{\frac{\alpha }{N}-1}u,\quad x\in {\mathbb{R}}^{N}, \\ -\Delta v+\lambda _{2}(x)v=\mu _{2}(I_{\alpha }* \vert v \vert ^{ \frac{N+\alpha }{N}}) \vert v \vert ^{\frac{\alpha }{N}-1}v+\beta (I_{\alpha }* \vert u \ve… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 28 publications
0
0
0
Order By: Relevance