In the symplectization of standard contact 3-space, R × R 3 , it is known that an orientable Lagrangian cobordism between a Legendrian knot and itself, also known as an orientable Lagrangian endocobordism for the Legendrian knot, must have genus 0. We show that any Legendrian knot has a non-orientable Lagrangian endocobordism, and that the crosscap genus of such a non-orientable Lagrangian endocobordism must be a positive multiple of 4. The more restrictive exact, non-orientable Lagrangian endocobordisms do not exist for any exactly fillable Legendrian knot but do exist for any stabilized Legendrian knot. Moreover, the relation defined by exact, non-orientable Lagrangian cobordism on the set of stabilized Legendrian knots is symmetric and defines an equivalence relation, a contrast to the non-symmetric relation defined by orientable Lagrangian cobordisms.