“…(X 1 , X 2 ) s− o (X ⊥ 1 , X ⊥ 2 )), where (X ⊥ 1 , X ⊥ 2 ) is a copy of (X 1 , X 2 ), but with independent components. The statistical tools of Section 4 and Section 5 could then be adapted in order to provide not only interesting extensions of the tests of Scaillet (2005) and Gijbels, Omelka and Sznajder (2010) to s-PQD and s-NQD, Now since (X 1 , X 2 ) s− o (Y 1 , Y 2 ) holds if and only if (F 1 (X 1 ),F 2 (X 2 )) s−ICX (Ḡ 1 (Y 1 ),Ḡ 2 (Y 2 )), Characterization 3.1 of Denuit, Lefèvre and Mesfioui (1999) for the s-increasing convex order may be formulated as E{O s (u 1 , u 2 ;F 1 (X 1 ),F 2 (X 2 ))} ≤ E{O s (u 1 , u 2 ;Ḡ 1 (Y 1 ),Ḡ 2 (Y 2 ))}, E{O (i1,s2) (0, u 2 ;F 1 (X 1 ),F 2 (X 2 ))}≤E{O (i1,s2) (0, u 2 ;Ḡ 1 (Y 1 ),Ḡ 2 (Y 2 ))} ∀i 1 <s 1 , E{O (s1,i2) (u 1 , 0;F 1 (X 1 ),F 2 (X 2 ))}≤E{O (s1,i2) (u 1 , 0;Ḡ 1 (Y 1 ),Ḡ 2 (Y 2 ))} ∀i 2 <s 2 , E{O i (0, 0;F 1 (X 1 ),F 2 (X 2 ))} ≤ E{O i (0, 0;Ḡ 1 (Y 1 ),Ḡ 2 (Y 2 ))} ∀i < s.…”