In order to determine an appropriate amount of premium, statistical goodness-of-fit criteria must be supplemented with actuarial ones when assessing performance of a given candidate pure premium. In this paper, concentration curves and Lorenz curves are shown to provide actuaries with effective tools to evaluate whether a premium is appropriate or to compare two competing alternatives. The idea is to compare the premium income for sub-portfolios gathering low risks (identified as low by means of the premiums under consideration) to the true one, or equivalently, to the actual losses. Numerical illustrations performed on hypothetical data and real ones demonstrate the usefulness of the proposed approach.
In this paper the interest is in testing the null hypothesis of positive quadrant dependence (PQD) between two random variables. Such a testing problem is important since prior knowledge of PQD is a qualitative restriction that should be taken into account in further statistical analysis, for example, when choosing an appropriate copula function to model the dependence structure. The key methodology of the proposed testing procedures consists of evaluating a “distance” between a nonparametric estimator of a copula and the independence copula, which serves as a reference case in the whole set of copulas having the PQD property. Choices of appropriate distances and nonparametric estimators of copula are discussed, and the proposed methods are compared with testing procedures based on bootstrap and multiplier techniques. The consistency of the testing procedures is established. In a simulation study the authors investigate the finite sample size and power performances of three types of test statistics, Kolmogorov–Smirnov, Cramér–von‐Mises, and Anderson–Darling statistics, together with several nonparametric estimators of a copula, including recently developed kernel type estimators. Finally, they apply the testing procedures on some real data. The Canadian Journal of Statistics 38: 555–581; 2010 © 2010 Statistical Society of Canada
Positive quadrant dependence is a specific dependence structure that is of practical importance in for example modelling dependencies in insurance and actuarial sciences. This dependence structure imposes a constraint on the copula function. The interest in this paper is to test for positive quadrant dependence. One way to assess the distribution of the test statistics under the null hypothesis of positive quadrant dependence is to resample from a constrained copula. This requires constrained estimation of a copula function. We show that this use of resampling under a constrained copula improves considerably the power performance of existing testing procedures. We propose two resampling procedures, one based on a parametric constrained copula estimation and one relying on nonparametric estimation of a positive quadrant dependence copula, and discuss their properties. The finite‐sample performances of the resulting testing procedures are evaluated via a simulation study that also includes comparisons with existing tests. Finally, a data set of Danish fire insurance claims is tested for positive quadrant dependence. The Canadian Journal of Statistics 41: 36–64; 2013 © 2012 Statistical Society of Canada
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.