2005
DOI: 10.2174/0929867053507397
|View full text |Cite
|
Sign up to set email alerts
|

Positron-Emitting Isotopes Produced on Biomedical Cyclotrons

Abstract: This review will discuss the production and applications of positron-emitting radionuclides for use in Positron Emission Tomography (PET), with emphasis on radionuclides that can be produced onsite with a biomedical cyclotron. In PET the traditional radionuclides of choice are (11)C, (113)N, (15)O and (18)F and although they will be briefly discussed in this article, the emphasis of this review will be on 'non-standard' PET radionuclides that are generating increased interest by the medical research community.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
38
0
1

Year Published

2007
2007
2020
2020

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 58 publications
(39 citation statements)
references
References 91 publications
(176 reference statements)
0
38
0
1
Order By: Relevance
“…The half-life of the radionuclide should allow for sufficient uptake and decay to yield considerable contrast and quality images [6]. The energies of the radionuclide emission should be appropriate for proper detection by the equipment while cost and availability are also important considerations.…”
Section: Introductionmentioning
confidence: 99%
“…The half-life of the radionuclide should allow for sufficient uptake and decay to yield considerable contrast and quality images [6]. The energies of the radionuclide emission should be appropriate for proper detection by the equipment while cost and availability are also important considerations.…”
Section: Introductionmentioning
confidence: 99%
“…Key steps in the development of nuclear medicine leading to its current important role in oncology include the (i) development of the Anger gamma camera, a collimator-based system for planar imaging of the distribution of gamma emitting radionuclides in patients [3]; (ii) the development of the 99m Tc generator, which made possible the widespread, economic availability of a versatile short half-life radionuclide for everyday use in hospitals [4]; (iii) the development of the PET scanner which, rather than using lead collimators, exploits the coincident detection of the two 511 KeV photons emitted upon annihilation of the positron emitted by the tracer radionuclide, to image radionuclide distribution in the body [5]; and (iv) more recently, the commercial availability of small biomedical cyclotrons dedicated to production of short half-life positron emitting isotopes like 18 F, 11 C, 13 N, and 15 O [6,7].…”
Section: Introductionmentioning
confidence: 99%
“…[22] Die Herstellung von Radioisotopen beginnt in einem Zyklotron, [23,24] einem kompakten Teilchenbeschleuniger, der Protonen-oder Deuteronenstrahlen im für die Bildung von 11 Bevor ein PET-Tracer einem Patienten verabreicht werden kann, muss außerdem ein Präparat von pharmazeutischer Qualität hergestellt werden. Es ist sicherzustellen, dass der Radiotracer auf geeignete Weise und schnell charakterisiert, gereinigt, formuliert (typischerweise als Kochsalzlösung) und sterilisiert wird.…”
Section: Synthesen Mit Kurzlebigen Pet-isotopenunclassified