Positron emission tomography (PET) is a powerful and rapidly developing area of molecular imaging that is used to study and visualize human physiology by the detection of positron-emitting radiopharmaceuticals. Information about metabolism, receptor/enzyme function, and biochemical mechanisms in living tissue can be obtained directly from PET experiments. Unlike magnetic resonance imaging (MRI) or computerized tomography (CT), which mainly provide detailed anatomical images, PET can measure chemical changes that occur before macroscopic anatomical signs of a disease are observed. PET is emerging as a revolutionary method for measuring body function and tailoring disease treatment in living subjects. The development of synthetic strategies for the synthesis of new positron-emitting molecules is, however, not trivial. This Review highlights key aspects of the synthesis of PET radiotracers with the short-lived positron-emitting radionuclides (11)C, (18)F, (15)O, and (13)N, with emphasis on the most recent strategies.
Further enhancing the performance and stability of inverted perovskite solar cells (PSCs) is crucial for their commercialization. We report that the functionalization of multication and halide perovskite interfaces with an organometallic compound, ferrocenyl-bis-thiophene-2-carboxylate (FcTc 2 ), simultaneously enhanced the efficiency and stability of inverted PSCs. The resultant devices achieved a power conversion efficiency of 25.0% and maintained >98% of their initial efficiency after continuously operating at the maximum power point for 1500 hours under simulated AM1.5 illumination. Moreover, the FcTc 2 -functionalized devices passed the international standards for mature photovoltaics (IEC61215:2016) and have exhibited high stability under the damp heat test (85°C and 85% relative humidity).
Magnetic Resonance Imaging is perhaps the most important and prominent technique in diagnostic clinical medicine and biomedical research. Its success and development as an imaging technique has been aided by the characteristics of contrast agents that enhance signal intensities and improve specificity. Gadolinium(iii) remains the dominant starting material for contrast agent design but other lanthanide ions (and other oxidation states i.e. +2) are also being increasingly investigated as alternatives to gadolinium(III) within laboratory conditions. This critical review provides a concise summary of the MRI-active gadolinium(III) complexes to date--their pros and cons, an outline of contrast agents based on other lanthanide ions (e.g. europium, dysprosium), and directs the reader to newer, more speculative areas of lanthanide-containing contrast agent design.
Molecular or personalised medicine is the future of patient management and healthcare, and molecular imaging plays a key role towards this goal. However, amongst molecular imaging techniques, no single modality is perfect and sufficient to gain all the necessary information. For instance, optical fluorescence imaging is difficult to quantify--especially in tissue more than a few millimetres in depth within a subject; magnetic resonance imaging (MRI) has superb resolution but low sensitivity and positron emission tomography (PET) has very high sensitivity but poor resolution. The combination of multiple molecular imaging techniques can therefore offer synergistic advantages over any modality alone. However, the problem cannot be solved by simply adding two different classes of imaging probes together, unless they happen to have identical pharmacodynamic properties. Therefore, multi-modal contrast agents or imaging probes have been developed to solve this problem. Despite the great wealth of information that such probes can provide, their development is far from trivial and represents an important challenge to synthetic chemists. In this feature article, we provide an overview of recent findings in the synthesis, evaluation and application of dual-modality molecular imaging probes.
Metal alkynyl complexes hold a fascination for synthetic chemists, structural chemists, and materials scientists alike. Harnessing the unique overlap of metal and carbon orbitals is a challenge that can be overcome in many ways and hence, there are many synthetic routes toward M-C=C-bond-forming reactions that utilize a wide variety of transition-metal and alkynyl reagents. Some methods can be widely applied, while others are specific to a particular metal or compound. The linear geometry of the alkynyl unit and its pi-unsaturated character have led to metal alkynyls becoming attractive building blocks for molecular wires and polymeric organometallic materials, which can possess interesting properties, such as optical nonlinearity, luminescence, liquid crystallinity, and electrical conductivity. A unique, multifaceted approach, often combining talents from all three of the above chemical disciplines, has served as a driving force behind the intense research into the development of metal alkynyl sigma complexes, the progress of which, particularly in the last ten years, is summarized in this review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.