Changing climatic conditions can have various consequences for forest ecosystems, from increasing frequencies of forest fires, ice and windstorm events to pathogen outbreaks and mass mortalities. The Standardized Precipitation Index (SPI) was chosen for the evaluation of drought impact on the radial growth of trees after extensive preliminary testing of various calculated monthly climate parameters from the CARPATCLIM database. SPI was calculated for periods between 3 and 36 months for different sites (lowland and mountainous parts of Serbia, Southeast Europe), from which Quercus robur, Q. cerris, Fagus sylvatica and Pinus sylvestris samples were acquired. Bootstrapped Pearson's correlations between SPI monthly indices and radial growth of tree species were calculated.We found that 12-month SPI for summer months may be a good predictor of positive and negative growth of different species at different sites. The strongest positive correlations for five of six tree-ring width chronologies were between 12-month June and 14-month September SPI, which implies that high growth rates can be expected when the autumn of the previous year, and winter, spring and summer of the current year, are well supplied with precipitation, and vice versa (low precipitation in given period/low growth rates).