In healthy adults, activation of γ-aminobutyric acid (GABA) A and glycine receptors inhibits neurons as a result of low intracellular chloride concentration ([Cl -] i ), which is maintained by the potassium-chloride cotransporter KCC2. A reduction of KCC2 expression or function is implicated in the pathogenesis of several neurological disorders, including spasticity and chronic pain following spinal cord injury (SCI). Given the critical role of KCC2 in regulating the strength and robustness of inhibition, identifying tools that may increase KCC2 function and, hence, restore endogenous inhibition in pathological conditions is of particular importance. We show that activation of 5-hydroxytryptamine (5-HT) type 2A receptors to serotonin hyperpolarizes the reversal potential of inhibitory postsynaptic potentials (IPSPs), E IPSP , in spinal motoneurons, increases the cell membrane expression of KCC2 and both restores endogenous inhibition and reduces spasticity after SCI in rats. Up-regulation of KCC2 function by targeting 5-HT 2A receptors, therefore, has therapeutic potential in the treatment of neurological disorders involving altered chloride homeostasis. However, these receptors have been implicated in several psychiatric disorders, and their effects on pain processing are controversial, highlighting the need to further investigate the potential systemic effects of specific 5-HT 2A R agonists, such as (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine hydrobromide (TCB-2). ] i (depolarizing shift of the chloride equilibrium potential, E Cl ) dramatically compromises the inhibitory control of firing rate and excitatory inputs (5-7). Given the role of KCC2 in regulating the strength of inhibitory synaptic transmission, identifying tools that may increase KCC2 function and, hence, restore endogenous inhibition in pathological conditions is of particular importance.Spasticity is a disabling complication affecting individuals with spinal cord injury (SCI) and is characterized by a velocity-dependent increase in muscle tone resulting from hyperexcitable stretch reflexes, spasms, and hypersensitivity to normally innocuous sensory stimulations (8, 9). Down-regulation of KCC2 after SCI in rats is implicated in the development of spasticity (10) and chronic pain (11,12). Notably, the expression of KCC2 in the motoneuron membrane is reduced, and, concomitantly, the density of cytoplasmic clusters is higher, suggesting that the surface stability of the transporter is reduced in these pathological conditions (10).Mounting evidence indicates that phosphorylation of KCC2 in the C-terminal intracellular domain dynamically regulates its activity and surface expression (1). In particular, phosphorylation by protein kinase (PK)C, enhances KCC2 activity and reduces endocytosis (13). Interestingly, activation of 5-hydroxytryptamine type 2 receptors (5-HT 2 Rs) to serotonin stimulates PKC and strengthens the left-right alternation of motor bursts observed during locomotion (14-16), which rely on reciprocal inhibition (17, 18). ...