Extreme ultraviolet (EUV) source produced by laser-induced discharge plasma (LDP) is a potential technical means in inspection and metrology. A pulsed Nd:YAG laser is focused on a tin plate to produce an initial plasma thereby triggering a discharge between high-voltage electrodes in a vacuum system. The process of micro-pinch formation during the current rising is recorded by a time-resolved intensified charge couple device camera. The evolution of electron temperature and density of LDP are obtained by optical emission spectrometry. An extreme ultraviolet spectrometer is built up to investigate the EUV spectrum of Sn LDP at 13.5 nm. The laser and discharge parameters such as laser energy, voltage, gap distance, and anode shape can influence the EUV emission.