Controversy about whether there are microbes in the placenta and if they have any functional importance during pregnancy and for neonatal health is ongoing. Previous work has demonstrated that the basal plate (BP), comprising maternal and fetal derived cells harbors intracellular bacteria. 16S sequencing and bacterial species-specific analysis of term placentas revealed that the gram-negative bacillus Ralstonia insidiosa, native to aqueous environments and an effective biofilm promoter, comprises the most abundant species in the BP. Here, we demonstrate whether R. insidiosa cells home to a particular niche in the BP, how they may arrive there, and whether they are associated with adverse outcomes. We developed methods to detect and study cell-specific localization of R.insidiosa using ex vivo and in vitro models. Additionally, we studied potential routes of R.insidiosa entry into the placenta. We show that R. insidiosa is a bona fide resident in human placental BP. It can access trophoblast cells in culture and within basal plate tissues where it localizes to intracellular single-membrane vacuoles and can replicate.However, the presence of R. insidiosa does not cause cell death and does not induce a pro-inflammatory immune response suggesting that it is not harmful in and of itself.Finally, we show that in a pregnant mouse model, R. insidiosa traffics to the placenta via the intrauterine route but does not induce preterm labor or preterm birth. Together, our findings provide a foundation for understanding non-pathogenic placental cell-microbe interactions and the functional importance of R. insidiosa in placental health and physiology.