Tree-ring density has been used for climate-response analysis and climate reconstruction for many species. However, our knowledge of wood density for the responses of different species to climate remains very limited and inconclusive. To determine the relationship between maximum latewood density (MXD) and climate for deciduous and evergreen coniferous species, MXD chronologies were developed from Larix speciosa Cheng et Law and Abies delavayi Franch. growing at 3200–3300 m a.s.l. in Gongshan county, northwestern Yunnan, in China. Significant positive correlations with late summer mean temperature were found for the MXD chronologies of both species. However, the highest correlation occurred in August–September for L. speciosa (r = 0.551, p < 0.01) and in September–October for A. delavayi (r = 0.575, p < 0.01), which may be associated with the physiological habits of trees. Linear model can describe relationships between late-summer temperature and MXD index for L. speciosa (MXD = 0.0506T8–9 − 0.0509, R2 = 30.3%) and A. delavay (MXD = 0.0317T9–10 + 0.4066, R2 = 33.0%). The composite chronology from the two species can reveal a late summer temperature (August−October) signal with the explained variance 32.2% for its response model. However, in dry areas and or at high altitudes close to upper tree line, the responses of wood densities to climate require further investigation for deciduous and evergreen coniferous species.