In the embryo of the leech Hirudo medicinalis, afferent projections of peripheral sensory neurons travel along common nerve tracts to the CNS, where they defasciculate, branch, and arborize into separate, modality-specific synaptic laminae. Previous studies have shown that this process requires, at least in part, the constitutive and then modality-specific glycosylations of tractin, a leech L1 homologue. We report here on the dynamics of growth of these projections as obtained by examining the morphology of single growing dye-filled sensory afferents as a function of time. Using 2-photon laser-scanning microscopy of the intact developing embryo, we obtained images of individual sensory projections at 3 to 30 min intervals, over several hours of growth, and at different stages of development. The time-lapse series of images revealed a highly dynamic and maturation-state-dependent pattern of growth. Upon entering the CNS, the growth cone-tipped primary axon sprouted numerous long filopodial processes, many of which appeared to undergo repeated cycles of extension and retraction. The growth cone was transformed into a sensory arbor through the formation of secondary branches that extended within the ganglionic neuropil along the anterior-posterior axis of the CNS. Numerous tertiary and quaternary processes grew from these branches and also displayed cycles of extension and retraction. The motility of these higher-order branches changed with age, with younger afferents displaying higher densities and greater motility than older, more mature sensory arbors. Finally, coincident with a reduction in higher order projections was the appearance of concavolar structures on the secondary processes. Rows of these indentations suggest the formation of presynaptic en-passant specializations accompanying the developmental onset of synapse formation.