Crucial prerequisites for the development of safe preclinical protocols in biomedical research are suitable animal models that would allow for human-related validation of valuable research information gathered from experimentation with lower mammals. In this sense, the miniature pig, sharing many physiological similarities with humans, offers several breeding and handling advantages (when compared to non-human primates), making it an optimal species for preclinical experimentation. The present review offers several examples taken from current research in the hope of convincing the reader that the porcine animal model has gained massively in importance in biomedical research during the last few years. The adduced examples are taken from the following fields of investigation: (a) the physiology of reproduction, where pig oocytes are being used to study chromosomal abnormalities (aneuploidy) in the adult human oocyte; (b) the generation of suitable organs for xenotransplantation using transgene expression in pig tissues; (c) the skin physiology and the treatment of skin defects using cell therapy-based approaches that take advantage of similarities between pig and human epidermis; and (d) neurotransplantation using porcine neural stem cells grafted into inbred miniature pigs as an alternative model to non-human primates xenografted with human cells.
We have used a yeast two-hybrid interaction assay to identify Chromator, a novel chromodomain containing protein that interacts directly with the putative spindle matrix protein Skeletor. Immunocytochemistry demonstrated that Chromator and Skeletor show extensive co-localization throughout the cell cycle. During interphase Chromator is localized on chromosomes to interband chromatin regions in a pattern that overlaps that of Skeletor. However, during mitosis both Chromator and Skeletor detach from the chromosomes and align together in a spindle-like structure. Deletion construct analysis in S2 cells showed that the COOH-terminal half of Chromator without the chromodomain was sufficient for both nuclear as well as spindle localization. Analysis of P-element mutations in the Chromator locus shows that Chromator is an essential protein. Furthermore, RNAi depletion of Chromator in S2 cells leads to abnormal microtubule spindle morphology and to chromosome segregation defects. These findings suggest that Chromator is a nuclear protein that plays a role in proper spindle dynamics during mitosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.