Several studies have shown that the transmission of afferent inputs from the periphery to the somatosensory cortex is attenuated during the preparation of voluntary movements. In the present study, we tested whether sensory attenuation is also observed during the preparation of a voluntary step. It would appear dysfunctional to suppress somatosensory information, which is considered to be of the utmost importance for gait preparation. In this context, we predict that the somatosensory information is facilitated during gait preparation. To test this prediction, we recorded cortical somatosensory potentials (SEPs) evoked by bilateral lower limb vibration (i.e., proprioceptive inputs) during the preparation phase of a voluntary right-foot stepping movement (i.e., stepping condition). The subjects were also asked to remain still during and after the vibration as a control condition (i.e., static condition). The amplitude and timing of the early arrival of afferent inflow to the somatosensory cortices (i.e., P1-N1) were not significantly different between the static and stepping conditions. However, a large sustained negativity (i.e., late SEP) developed after the P1-N1 component, which was larger when subjects were preparing a step compared with standing. To determine whether this facilitation of proprioceptive inputs was related to gravitational equilibrium constraints, we performed the same experiment in microgravity. In the absence of equilibrium constraints, both the P1-N1 and late SEPs did not significantly differ between the static and stepping conditions. These observations provide neurophysiological evidence that the brain exerts a dynamic control over the transmission of the afferent signal according to their current relevance during movement preparation.