Environmental nanotechnology has received much attention owing to its implications on environmental ecosystem, and thus is promising for the elimination of toxic elements from the aquatic surface. This work focuses on Cu-doped ZnSe nanoparticles using the co-precipitation method. The synthesized Cu-doped ZnSe nanoparticles were examined for structural, optical, and morphological properties with the help of XRD, FTIR, UV/vis diffuse reflection spectroscopy (DRS), FESEM, TEM, and XPS. The synthesized Cu-doped ZnSe nanoparticles revealed the presence of Cu2+ in the ZnSe lattice, which has been shown to take a predominant role for enhanced catalysis in the Cu-doped ZnSe nanoparticles. The synthesized Cu-doped ZnSe nanoparticles were investigated for their catalytic and antibacterial activities. The 0.1 M copper-doped ZnSe nanoparticles exhibited the highest rate of degradation against the methyl orange dye, which was found to be 87%. A pseudo-first-order kinetics was followed by Cu-doped ZnSe nanoparticles with a rate constant of 0.1334 min−1. The gram-positive and gram-negative bacteria were used for investigating the anti-bacterial activity of the Cu-doped ZnSe nanoparticles. The Cu-doped ZnSe nanoparticles exhibited enhanced photocatalytic and antibacterial activity.