Cervical vestibular evoked myogenic potentials (cVEMPs) are usually elicited by transient tonebursts, but when elicited by amplitude-modulated (AM) tones, they can provide new information about cVEMPs. Previous reports of cVEMPs elicited by AM tones, or AMcVEMPs, have not systematically examined the effects of tonic EMG activation on their response properties. Fourteen young, healthy female adults (ages 20-24) with clinically normal audiograms participated in this study. AMcVEMPs were elicited with bone-conducted 500 Hz tones amplitude modulated at a rate of 37 Hz and recorded for five different EMG targets ranging from 0 to 90 μV. Amplitude increased linearly as tonic EMG activation increased. Signal-to-noise ratio (SNR) was minimal at 0 μV, but robust and with equivalent values from 30 to 90 μV; phase coherence and EMG-corrected amplitude had findings similar to SNR across EMG target levels. Interaural asymmetry ratios for SNR and phase coherence were substantially lower than those for raw or corrected amplitude. AMcVEMP amplitude scaled with tonic EMG activation similar to transient cVEMPs. Signal-to-noise ratio, phase coherence, and EMG-corrected amplitude plateaued across a range of EMG values, suggesting that these properties of the response reach their maximum values at relatively low levels of EMG activation and that higher levels of EMG activation are not necessary to record robust AMcVEMPs.