Amorphous solids, or glasses, are distinguished from crystalline solids by
their lack of long-range structural order. At the level of two-body structural
correlations, glassformers show no qualitative change upon vitrifying from a
supercooled liquid. Nonetheless the dynamical properties of a glass are so much
slower that it appears to take on the properties of a solid. While many
theories of the glass transition focus on dynamical quantities, a solid's
resistance to flow is often viewed as a consequence of its structure. Here we
address the viewpoint that this remains the case for a glass. Recent
developments using higher-order measures show a clear emergence of structure
upon dynamical arrest in a variety of glass formers and offer the tantalising
hope of a structural mechanism for arrest. However a rigorous fundamental
identification of such a causal link between structure and arrest remains
elusive. We undertake a critical survey of this work in experiments, computer
simulation and theory and discuss what might strengthen the link between
structure and dynamical arrest. We move on to highlight the relationship
between crystallisation and glass-forming ability made possible by this deeper
understanding of the structure of the liquid state, and emphasize the potential
to design materials with optimal glassforming and crystallisation ability, for
applications such as phase-change memory. We then consider aspects of the
phenomenology of glassy systems where structural measures have yet to make a
large impact, such as polyamorphism (the existence of multiple liquid states),
aging (the time-evolution of non-equilibrium materials below their glass
transition) and the response of glassy materials to external fields such as
shear.Comment: 70 page