Improvements in the mechanical strength of Al–Fe–Cr–Ti alloys have been demonstrated when non-equilibrium microstructures are developed. This paper investigated the effect of cooling rate and composition on the phase formation, microstructure and properties of new Al96.6Fe1.5Cr1.7Ti0.2 and Al91.6Fe4.9Cr2.2Ti1.3 (at.-%) alloys. Wedge-shaped samples produced by suction casting were characterised by optical, scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, energy dispersive X-ray spectroscopy and microhardness. The results showed that the morphology and size of the phases precedent of the flower-like phases change from small, spherical particles to large flower-like phases with decreasing the cooling rate. The presence of intermetallic phases Al13Fe4, Al13Cr2 and Al3Ti in the Al91.6Fe4.9Cr2.2Ti1.3 alloy, resulted in a hardness 1.6 times higher compared to the Al96.6Fe1.5Cr1.7Ti0.2 alloy.