Respiration measurement is applied as a universal tool to determine the activity of biological systems. The measurement techniques are difficult to compare, due to the vast variety of devices and analytical procedures commonly in use. They are used in fields as different as microbiology, gene engineering, toxicology, and industrial process monitoring to observe the physiological activity of living systems in environments as diverse as fermenters, shake flasks, lakes and sewage plants. A method is introduced to determine accuracy, quantitation limit, range and precision of different respiration measurement devices. Corynebacterium glutamicum cultures were used to compare an exhaust gas analyzer (EGA), a RAMOS device (respiration measurement in shake flasks) and a respirometer. With all measuring devices it was possible to determine the general culture characteristics. The EGA and the RAMOS device produced almost identical results. The scatter of the respirometer was noticeably higher. The EGA is the technique of choice, if the reaction volume is high or a short reaction time is required. The possibility to monitor cultures simultaneously makes the RAMOS device an indispensable tool for media and strain development. If online monitoring is not compulsive, the respiration of the investigated microbial system extremely low, or the sample size small, a respirometer is recommended.