In a wireless multimedia sensor network (WMSN), the minimization of network energy consumption is a crucial task not just for scalar data but also for multimedia. In this network, a camera node (CN) captures images and transmits them to a base station (BS). Several sensor nodes (SNs) are also placed throughout the network to facilitate the proper functioning of the network. Transmitting an image requires a large amount of energy due to the image size and distance; however, SNs are resource constrained. Image compression is used to scale down image size; however, it is accompanied by a computational complexity trade-off. Moreover, direct image transmission to a BS requires more energy. Thus, in this paper, we present a distributed image compression architecture over WMSN for prolonging the overall network lifetime (at high throughput). Our scheme consists of three subtasks: determining the optimal camera radius for prolonging the CN lifetime, distributing image compression tasks among the potential SNs to balance the energy, and, finally, adopting a multihop hierarchical routing scheme to reduce the long-distance transmission energy. Simulation results show that our scheme can prolong the overall network lifetime and achieve high throughput, in comparison with a traditional routing scheme and its state-of-the-art variants.