Abstract:The widespread use of power electronics converters, e.g., to interface renewable generation systems with the grid or to supply some high-efficiency loads, has caused increased levels of waveform distortions in the modern distribution system. Voltage and current waveforms include spectral components from 0 kHz to 150 kHz, characterized by a non-uniform time-frequency behavior. This wide interval of frequencies is currently divided into "low-frequency" (from 0 kHz to 2 kHz) and "high-frequency" (from 2 kHz to 150 kHz). While the low-frequencies have been exhaustively investigated in the relevant literature and are covered by adequate standardization, studies for the high-frequencies have been addressed only in the last decade to fill current regulatory gaps. In this paper, new power quality (PQ) indices for the assessment of waveform distortions from 0 kHz to 150 kHz are proposed. Specifically, some currently available indices have been properly modified in order to extend their application also to wide-spectrum waveforms. In the particular case of waveform distortions due to renewable generation, numerical applications prove that the proposed indices are useful tools for the characterization of problems (e.g., overheating, equipment malfunctioning, losses due to skin effects, hysteresis losses or eddy current losses) in cases of both low-frequency and high-frequency distortions.