2006
DOI: 10.1016/j.jnt.2006.01.013
|View full text |Cite
|
Sign up to set email alerts
|

Power integral bases in prime-power cyclotomic fields

Abstract: Let p be an odd prime and q = p m , where m is a positive integer. Let ζ be a primitive qth root of unity, and O q be the ring of integers in the cyclotomic field Q(ζ ). We prove that if O q = Z[α] and gcd(h + q , p(p − 1)/2) = 1, where h + q is the class number of Q(ζ + ζ −1 ), then an integer translate of α lies on the unit circle or the line Re(z) = 1/2 in the complex plane. Both are possible since O q = Z[α] if α = ζ or α = 1/(1 + ζ ). We conjecture that, up to integer translation, these two elements and t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
1
0
1

Year Published

2008
2008
2019
2019

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 16 publications
0
1
0
1
Order By: Relevance
“…Robertson [13] proves the following theorem which shows that the conjecture is true if q is a power of 2. In [3] Gaál and Robertson obtain a result similar to Theorem 1.1 for the classes of generators of Z[ζ q ], where q is a power of an odd prime number p; more precisely they prove the following theorem. is the order of the class group of Q(ζ q + ζ q ), then either α is equivalent to ζ q or α + α is an odd integer.…”
Section: Introductionmentioning
confidence: 89%
“…Robertson [13] proves the following theorem which shows that the conjecture is true if q is a power of 2. In [3] Gaál and Robertson obtain a result similar to Theorem 1.1 for the classes of generators of Z[ζ q ], where q is a power of an odd prime number p; more precisely they prove the following theorem. is the order of the class group of Q(ζ q + ζ q ), then either α is equivalent to ζ q or α + α is an odd integer.…”
Section: Introductionmentioning
confidence: 89%
“…Alors soit α est équivalent à ζ q , soit α est équivalent à 1/(ζ q + 1). Robertson [8] démontre le théorème suivant qui preuve une telle conjecture dans le cas où q est une puissance de 2 : Ensuite, Robertson et Gaál [3] obtiennent un résultat similaire au théorème 1 pour les classes des générateurs de Z[ζ q ], où q est la puissance d'un nombre premier p, plus précisément :…”
Section: Introductionunclassified