This chapter present one possible evolution is the parallel topology on the high-voltage bus for the renewable energy system. The system is not connected to a chain of photovoltaic (PV) modules and the different sources renewable. This evolution retains all the advantages of this system, while increasing the level of discretization of the Maximum Power Point Tracker (MPPT). So it is no longer a chain of PV modules that works at its MPPT but each PV module. In addition, this greater discretization allows a finer control and monitoring of operation and a faster detection of defects. The main interest of parallel step-up voltage systems, in this case, lies in the fact that the use of relatively high DC voltages is possible in these architectures distributed.PLC systems are installed in HVDC lines using clean inter-wafer circuits, used for insulation and impedance between the DC-DC converter and the power grid. It is possible to view PLC systems as an additional part of each converter, without modifying its basic structure. Nevertheless, the two main steps are driven by a common microcontroller peripheral interface (PIC) controller assuming both the controller's master-slave tracking and control functions. This system is required for communication in small and medium power systems, such as remote reading, fire/ fire alarm control and shutdown. The system is designed with a digital modulator [19] to reduce the workload of the main controller of the DC-DC-PLC converter. These are two independent steps and a single control output reduces the cost of the entire system significantly.
PLC system design on the HVDC busRenewable system manufacturers' energy products increasingly differentiate their products by providing more sophisticated and inventive features such as safety, stability, control, comfort, convenience and performance. However, the use of these applications requires high volume data exchange and a reliable data communication network to enable efficient and efficient control over electronic devices. On the other hand, conventional infrastructure systems and distributed decentralized power generation systems transmit on high voltage lines, the PLC system does not affect the quality of energy transmission of the system. In addition, the nodes of the PLC slaves will be integrated in the DC-DC converter corresponding to each generator. Therefore, the design of the PLC system on the high voltage line is the simple, economical and reliable signal transmission.In order to simplify and standardize the electrical system of the renewable energy generators on the HVDC bus, a number of communication standards and protocols have been proposed. Most communication systems on the HVDC bus are modified based on existing commercial communication technologies to meet the HVDC bus automation requirements such as high stability and error correction capability. In general, almost all networks for the HVDC bus are digital networks because of its high stability in terms of noise protection and error correction capability. From distrib...