This paper proposes a coordination method for the voltage control devices based on optimal settings of the D-STATCOMs, on the load tap changer (OLTC) transformer and the distributed generations (DGs)-based renewable energy resources (RERs). The central controller is introduced to handle the active smart distribution network (SDN) problems to maintain the voltage profile within its permissible limits, minimize power losses in different operating conditions, and minimize the energy wastage from the distributed renewable energy resources. These problems are formulated as a multi-objective optimization problem. With increasing load demand and RERs in the distribution system, voltage coordination threatens real-time efficiency. In this research work, central controller-based Gorilla Troops optimization (GTO) algorithm is proposed to detect the optimum solutions for the voltage coordination problem. The load demand uncertainty and the stochastic nature of power generated from RERs (PV panels and wind turbines) are considered in the voltage coordination problem due to their significant effects on the operation and planning of the SDN. The proposed SDN has been represented based on the Internet of Things (IoT) communication protocol. It enhances the data and information transfer between the system-connected agents. A practical test system, NDEDC-24 bus radial distribution network from the North Delta Electrical Distribution Company and IEEE-33 node system are used to test and evaluate the proposed method. The results are compared with other well-known evolutionary methods. The proposed method obtains more accurate results than the other methods.INDEX TERMS D-STATCOM, distribution network, Internet of Things, on-load tap changer, voltage coordination.