In the current scenario, integration of renewables, growth of non-linear industrial and commercial loads results in various power quality issues. Among commercial utilities connected to the grid, hospital-operated loads include sensitive, linear, non-linear, and unbalanced loads. These loads are diverse as well as prioritized, which also causes major power quality issues in the local distribution system. Due to its widespread divergence, it leads to harmonic injection and reactive power imbalance. Distribution Static Compensator (DSTATCOM) is proposed as a solution for harmonic mitigation, load balancing, reactive power imbalances, and neutral current compensation. The present work utilizes Interval Type-2 Fuzzy Logic Controller (IT2FLC) with Recursive Least Square (RLS) filter for generating switching pulses for IGBT switches in the DSTATCOM to improve power quality in the Local Distribution Grid. The proposed approach also shows superior performance over Type 1 fuzzy logic controller and Conventional PI controller in mitigating harmonics. For effective realization, the proposed system is simulated using MATLAB software.INDEX TERMS Local distribution grid, DSTATCOM, Interval type 2 fuzzy logic controller, power quality, and Recursive least square filter.
The Dynamic Voltage Restorer (DVR) is one of the fast, flexible, and cost effective solutions available in compensating the voltage-related power quality problems in power distribution systems. In this paper is discussed how power quality enhancement of sensitive load is achieved by applying three versions of Autonomous Group Particle Swarm Optimization like AGPSO1, AGPSO2, and AGPSO3 for tuning the Proportional-Integral DVR controller under balanced and nonlinear load conditions. A novel multiobjective function is formulated to express the control performance of the system, which is quantified using three power quality indices such as Total Harmonic Distortion (THD), voltage sag index, and RMS voltage variation. The obtained results are compared with the Proportional-Integral (PI) controller tuned by Ziegler-Nichols (ZN) method and also by Simple Particle Swarm Optimization based PI controlled DVR. The proposed methodology has improved the performance in terms of the considered power quality indices and the simulation has been carried out in MATLAB/Simulink environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.