The cover: Front: Formulation and solution of an optimal control problem, coincidentally the benchmark problem in Paper 6. Back: Positive and not so positive exit messages from the solvers used in the dissertation.
Typeset with L A T E X 2εPrinted by LiU-Tryck, Linköping, Sweden 2015 i Abstract Vehicle powertrain electrification, i.e. combining the internal combustion engine (ICE) with an electric motor (EM), is a potential way of meeting the increased demands for efficient and low emission transportation, at a price of increased powertrain complexity since more degrees of freedom (DoF) have been introduced. Optimal control is used in a series of studies of how to best exploit the additional DoFs.In a diesel-electric powertrain the absence of a secondary energy storage and mechanical connection between the ICE and the wheels means that all electricity used by the EMs needs to be produced simultaneously by the ICE, whose rotational speed is a DoF. This in combination with the relatively slow dynamics of the turbocharger in the ICE puts high requirements on good transient control.In optimal control studies, accurate models with good extrapolation properties are needed. For this aim two nonlinear physics based models are developed and made available that fulfill these requirements, these are also smooth in the region of interest, to enable gradient based optimization techniques. Using optimal control and one of the developed models, the turbocharger dynamics are shown to have a strong impact on how to control the powertrain and neglecting these can lead to erroneous estimates both in the response of the powertrain as well as how the powertrain should be controlled. Also the objective, whether time or fuel is to be minimized, influences the engine speed-torque path to be used, even though it is shown that the time optimal solution is almost fuel optimal. To increase the freedom of the powertrain control, a small energy storage can be added to assist in the transients. This is shown to be especially useful to decrease the response time of the powertrain, but the manner it is used, depends on the time horizon of the optimal control problem.The resulting optimal control solutions are for certain cases oscillatory when stationary controls would have been expected. This is shown to be neither an artifact of the discretization used nor a result of the modeling assumptions used. Instead it is for the formulated problems actually optimal to use periodic control in certain stationary operating points. Measurements show that the pumping torque is different depending on whether the controls are periodic or constant despite the same average value. Whether this is beneficial or not depends on the operating point and control frequency, but can be predicted using optimal periodic control theory.In hybrid electric vehicles (HEV) the size of the energy storage reduces the impact of poor transient control, since the battery can compensate for the slower dynamics of the ICE. For HEVs the problem instead is how and when to use the b...