Abstract:The security of power system restoration is severely affected by uncertain factors, especially the start-up time of generating unit and the amount of load pick-up. Solving the optimization restoration problem is challenging since it needs to determine different priorities in which units and loads are restored with the consideration of double uncertainty. Therefore, an optimal source-load coordinated restoration method that is based on information gap decision theory (IGDT) is proposed. Firstly, the time-domain restoration characteristics of black-start unit (BSU), non-black-start unit (NBSU), and load are described with analysis of double uncertainty. On this basis, a coupled multi-objective optimization model is built with double uncertainty, in which source-load coordinated restoration is realized. Then, IGDT is adopted to convert the uncertainty optimization model to a certain one with robustness, which tolerates the most uncertainty and still meets the desired requirement. Finally, the optimization model is solved by non-dominated genetic algorithm II (NSGA-II). The effectiveness and robustness of the proposed method is further illustrated through a case study based on the IEEE 39-bus system.