“…1 , @ (4,3) } Γ(6) = {S 6 0 } Γ(6.S.0) = {F 4 1 , @ (4,3) } Γ(6.S.1) = {F 1 1 , @ (1,0) } Γ(7) = {S 6 1 , @ (6,5) } Γ(8) = {S 6 2 , @ (7,2) } Γ(9) = {F 9 0 } Γ(10) = {F 10 0 } Γ(10.F.0) = {F 9 0 } Γ(10.F.1) = {S 6 2 , @ (7,2) } Γ(11) = {F 10 1 , @ (10,9) } Γ(12) = {F 12 0 } Γ(13) = {F 13 0 } Γ(13.F.0) = {F 12 0 } Γ(13.F.1) = {S 6 2 , @ (7,2) } Γ(13.F.3) = {S 6 2 , @ (7,2) } Γ(13.F.2) = {F 10 2 , @ (15.S.1,15.S.2) } Γ(14) = {F 13 1 @ (13,12) } Γ(15) = {S 15 0 } Γ(15.S.0) = {F 13 1 , @ (13,12) } Γ(15.S.1) = {F 10 1 , @ (10,9) } Γ(15.S.2) = {S 6 2 , @ (7,2) } Γ(15.S.3) = {S 6 2 , @ (15.S.L,15.S.R) , @ (7,2) } Γ(15.S.L) = {F 13 2 , @ (15.S.0,15.S.2) } Γ(16) = {S 15 1 , @ (15,14) } Γ(15.S.R) = {F 10 2 , @ (15.S.1,15.S.2) } Γ(17) = {S 15 2 , @ (16,11) } Γ(18) = {S 6 2 , @ (15.S.L,15.S.R) , @ (17,8) , @ (7,2) } ϕ(13) = true ϕ(15) = true Γ, ϕ |= (S 15 @ 16 (F 13 @ 14 F 12 )@ 17 (F 10 @ 11 F 9 ))@ 18 (S 6 @ 7 (F 4 @ 5 F 3 )@ 8 (F 1 @ 2 F 0 ))…”