2018
DOI: 10.1088/1742-6596/1015/3/032148
|View full text |Cite
|
Sign up to set email alerts
|

Practical aspects of using a neural network to solve inverse geophysical problems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2018
2018
2021
2021

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 2 publications
0
1
0
1
Order By: Relevance
“…So, the equations in the PML zones are solved for approximation with additional factor and damping coefficients [23]. This approach has been successfully applied to solve the dynamic problem of elasticity theory from the numerical modeling of seismic fields [25,26].…”
Section: Fig 4 Schematic Representation Of the Two-dimensional Modementioning
confidence: 99%
“…So, the equations in the PML zones are solved for approximation with additional factor and damping coefficients [23]. This approach has been successfully applied to solve the dynamic problem of elasticity theory from the numerical modeling of seismic fields [25,26].…”
Section: Fig 4 Schematic Representation Of the Two-dimensional Modementioning
confidence: 99%
“…В связи с этим уравнения в зонах PML решаются для аппроксимации с учетом добавочного фактора и демпфирующих коэффициентов [16]. Подобный подход успешно применяется для решения динамической задачи теории упругости по численному моделированию сейсмических полей [18,19].…”
unclassified