Private and military troll factories (facilities used to spread rumours in online social media) are currently proliferating around the world. By their very nature, they are obscure companies whose internal workings are largely unknown, apart from leaks to the press. They are even more concealed when it comes to their underlying technology. At least in a broad sense, it is believed that there are two main tasks performed by a troll factory: sowing and spreading. The first is to create and, more importantly, maintain a social network that can be used for the spreading task. It is then a wicked long-term activity, subject to all sorts of problems. As an attempt to make this perspective a little clearer, this paper uses exploratory design science research to produce artefacts that could be applied to online rumour spreading in social media. Then, as a hypothesis: it is possible to design a fully automated social media agent capable of sowing a social network on microblogging platforms. The expectation is that it will be possible to identify common opportunities and difficulties in the development of such tools, which in turn will allow an evaluation of the technology, but above all the level of automation of these facilities. The research is based on a general domain Twitter corpus with 4M+ tokens and on ChatGPT, and discusses both knowledge-based and deep learning approaches for smooth tweet generation. These explorations suggest that for the current, widespread and publicly available NLP technology, troll factories work like a call centre; i.e. humans assisted by more or less sophisticated computing tools (often called cyborgs).