Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
When an oilfield is exploited by simply producing oil and gas from a number of wells, the reservoir pressure in many circumstances drops quicker than normal impacting the production rates (Koning, 1988) and well performance. To maintain the pressures in the oil producing formations, waterflooding enhancement method is implemented by the Operators. This is achieved by drilling injection wells or converting the oil producing wells into injectors. The injection wells are located at carefully selected points in the oilfield so that the water displaces as much oil as possible to the production wells before the water starts to break through. A significant saving in an oilfield development can be obtained by reducing the actual number of injecting wells and increasing each of the injector wells' capacity for injection. Balancing the injection and produced volumes often involves injecting at high pressures leading to the fracture of the reservoir rocks along a plane intersecting the wellbore. This happens when injection pressure overcomes the rock stress and its tensile strength, thereby creating an induced fracture network. With continuous injection, these fractures start propagating into the reservoir and may reach the reservoir caprock. Continuing to inject further in such a fracture system may breach the top seal integrity of the caprock leading to uncontrolled out of zone injection. The study of evaluation of downhole fracture monitoring is divided into two parts. In this paper a downhole verification approach to identify the fracture initiation point(s) is the focus. It describes the planning, execution and interpretation of the downhole data. This includes spectral acoustic monitoring and modelling of the temperature responses to quantify the injectivity profile. In paper (Kohli, Kelder, Volkov, Castelijns, & van Eijs, 2021), the direct business impact and regulatory requirements are discussed by further integration of acoustic monitoring and temperature modeling data with detailed results from downhole measurements of fracture dimensions by means of pressure fall off tests. Combined, both studies form the integrated approach that the Operator took to meet the regulatory requirements proving that the fracture network propagation remains within the reservoir and that the top seal integrity is maintained.
When an oilfield is exploited by simply producing oil and gas from a number of wells, the reservoir pressure in many circumstances drops quicker than normal impacting the production rates (Koning, 1988) and well performance. To maintain the pressures in the oil producing formations, waterflooding enhancement method is implemented by the Operators. This is achieved by drilling injection wells or converting the oil producing wells into injectors. The injection wells are located at carefully selected points in the oilfield so that the water displaces as much oil as possible to the production wells before the water starts to break through. A significant saving in an oilfield development can be obtained by reducing the actual number of injecting wells and increasing each of the injector wells' capacity for injection. Balancing the injection and produced volumes often involves injecting at high pressures leading to the fracture of the reservoir rocks along a plane intersecting the wellbore. This happens when injection pressure overcomes the rock stress and its tensile strength, thereby creating an induced fracture network. With continuous injection, these fractures start propagating into the reservoir and may reach the reservoir caprock. Continuing to inject further in such a fracture system may breach the top seal integrity of the caprock leading to uncontrolled out of zone injection. The study of evaluation of downhole fracture monitoring is divided into two parts. In this paper a downhole verification approach to identify the fracture initiation point(s) is the focus. It describes the planning, execution and interpretation of the downhole data. This includes spectral acoustic monitoring and modelling of the temperature responses to quantify the injectivity profile. In paper (Kohli, Kelder, Volkov, Castelijns, & van Eijs, 2021), the direct business impact and regulatory requirements are discussed by further integration of acoustic monitoring and temperature modeling data with detailed results from downhole measurements of fracture dimensions by means of pressure fall off tests. Combined, both studies form the integrated approach that the Operator took to meet the regulatory requirements proving that the fracture network propagation remains within the reservoir and that the top seal integrity is maintained.
For maintenance of the reservoir pressures and enhanced oil recovery in oil producing formations, waterflooding is often implemented by the Operators. This is achieved by drilling injection wells or converting the oil producing wells into injectors. The injection wells are located at carefully selected points in the oilfield so that the water displaces as much oil as possible to the production wells before the water starts to break through. A significant saving in an oilfield development can be obtained by reducing the actual number of injecting wells and increasing each of the injector wells’ capacity for injection. Balancing the injection and produced volumes often involves injecting at high pressures leading to the fracture of the reservoir rocks along a plane intersecting the wellbore. This happens when injection pressure exceeds the minimal principal stress and the tensile strength of the rock, thereby creating a hydraulic fracture. With continuous injection, these fractures start propagating into the reservoir and may reach the reservoir caprock, which may decrease the integrity and possibly lead to out of zone injection. The study of evaluation of downhole fracture monitoring is divided into two parts. In the first part of the paper (Kohli, et al., 2021), a downhole verification approach to identify the fracture initiation point(s) is the focus. It describes the planning, execution and interpretation of the downhole data. This includes spectral acoustic monitoring and modelling of the temperature responses to quantify the injectivity profile. In this second part of the paper, the direct business impact is discussed by further integration of acoustic monitoring and temperature modeling data with detailed results from of fracture dimension (height) measurement by means of pressure fall off tests. Combined, both studies form an integrated approach that the operator took to prove that the fracture network propagation remains within the reservoir and that the top seal integrity is maintained.
In mature fields, improving oil recovery by waterflood in depleted sands while remaining below the desired gas/oil ratio (GOR) limits is always a challenge. A high GOR, inconsistent with reservoir modeling predictions, triggered a halt in production in one of the new updip producers in the field. Re-visiting the understanding of the reservoir fluid behavior and dynamic simulation model(s), and, most importantly, confirming the formation of a secondary gas cap triggered the planning and execution of a production logging program, a sampling program, and a series of well tests. This paper presents a case study that shows how production, acoustic, and temperature dynamic modeling complemented each other to meet the logging program objectives: 1) confirm the source of gas (a gas cap versus differentially-depleted sand units); 2) obtain downhole samples with high cumulative oil content for geochemical and PVT (Pressure-Volume-Temperature) analyses; and, 3) design an optimized production/injection strategy that allows the operator to resume production under new conditions that control the GOR in the well. Production logs were obtained using a third generation (Gen3) Production Logging Tool (PLT) run with an innovative combination of electrical, optical, and capacitance micro-sensors as well as doppler transducers flowing the well at two different production rates. A new advanced approach to processing optical data was used as part of an otherwise well-established analysis workflow. The log interpretation reveals a segregated well flow profile with negligible water production at depth, an intermediate oil zone with minimal gas holdup, and an upper gas-dominant zone. The High-Definition Spectral Acoustic (Noise) and High-Precision Temperature (SNL-HD and HPT, respectively) logs were obtained to model the allocation (producing versus non-producing sands) and quantification (oil versus gas volumes) of the reservoir flow, respectively. While the well production profile suggests a potential secondary gas cap or a highly depleted gas-producing top sand layer(s), the high frequency acoustic measurements indicate radial reservoir flow from five main producing sand units, the deepest of which is a few feet above the bottom-most perforations. Temperature dynamic modeling indicates that each producing sand unit produces both oil and gas. The depths of the producing sand units, the produced hydrocarbon composition, and the well production profile indicate a depth mismatch between where the gas is produced in the reservoir and where it is seen in the well. A theory to explain this depth mismatch is annular gas flow in the lower completed well section, which would disprove the formation and existence of a gas cap. Well tests and GOR calculations in the various producing sand units indicate an improved GOR and an increasing reservoir pressure (Pres), both of which were expected due to injection at high Voidage Replacement Ratio (VRR ≥ 1) and a pause in production in the well. Results from the analyzed downhole samples and extended well tests provided inputs to update reservoir models, PVT properties, and allow better predictions of Pres and GOR changes with production and injection. Additionally, PVT results, using the downhole fluid samples, helped engineer the original reservoir fluid composition (at virgin pressures) and narrow down the range of initial reservoir saturation pressure (Psat) in the updip location. Geochemical results also confirmed the connectivity of the oil column between updip and downdip locations. All observations, data, and modeling helped shape an optimized production strategy to be implemented in the well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.