A quantitative model is presented to describe the kinetics of grain growth in complexly alloyed austenite. The model assumes that the activation energy of grain growth is proportional to the activation energy of bulk self-diffusion, which is calculated as a function of the chemical composition of the solid solution using the previously obtained formula. The empirical parameters of the model are determined on the basis of experimental data on the kinetics of isothermal grain growth in steels with the chemical composition varying in a wide range: C (0.05 ÷ 0.32), Mn (0.30 ÷1.88), Si (0.01÷ 0.29), Ni (0.0 ÷ 4.0), Cr (0.0 ÷ 2.0), Mo (0.0 ÷ 0.5), Nb (0.00 ÷ 0.05) available in the literature. The model allows one to obtain good agreement with the experiment for the considered steels in which the minimum (~ 79.7 kJ / mol) and maximum (~ 243.7 kJ / mol) values of the activation energy of grain growth differ by 3 times. The average absolute value of the relative error in calculating the grain size is about 11 % that is comparable to the measurement error. Taking into account the influence of the chemical composition on the activation energy of grain growth, implemented in the developed model, it is possible to obtain agreement with the experiment without accounting for the solid-solution pinning of moving boundaries (the solute drag effect) requires a large number of additional empirical parameters (two exponential parameters for each alloying element). This result deserves further consideration from the physical viewpoint and verification on both simple carbon steels and steels with various quantities of Mn, Mo and Nb, which, according to literature, exert the strongest solute drag effect.