Mechanical properties of microalloyed steels are enhanced by fine precipitates, that ensure grain growth control during subsequent heat treatment. This study aims at predicting austenite grain growth kinetics coupling a precipitation model and a grain growth model. These models were applied to a titanium and niobium microalloyed steel. The precipitate size distributions were first characterized by TEM and SEM and prior austenite grain boundaries were revealed by thermal etching after various isothermal treatments. From CALPHAD database, a solubility product was determined for (Ti,Nb)C precipitates. A numerical model based on the classical nucleation and growth theories was used to predict the time evolution of (Ti,Nb)C size distributions during various isothermal heat treatments. The precipitation model was validated from TEM/SEM analysis. The resulting precipitate size distributions served as entry parameters to a simple grain growth model based on Zener pinning. The pinning pressure was calculated using the whole size distribution. The resulting austenite grain growth kinetics were in good agreement with the experimental data obtained for all investigated heat treatments.
This study presents the design and development of a hot-rolled bainitic steel, presenting a good combination of strength and stretch-flangeability, for automotive applications. Ti, Nb, and Mo were added in the steel composition in order to control austenite grain sizes, enhance precipitation hardening, and promote the formation of bainite. This study focuses on the effect of process parameters on final microstructures and mechanical properties. These parameters are the finishing rolling temperature, which conditions the austenite microstructure before its decomposition, and the coiling temperature, which conditions the nature and morphology of the ferritic phases transformed. A preliminary study allowed to determine the austenite grain growth behavior during reheating, the recrystallization kinetics, and the continuous cooling transformation curves of the studied steel. Then, a first set of parameters was tested at a semi-industrial scale, which confirmed that the best elongation properties were obtained for homogeneous bainitic lath/granular microstructures, that can be produced by choosing a coiling temperature of 500 ∘ C . When choosing those parameters for the final industrial trial, the microstructure obtained consisted of a homogeneous lath/granular bainite mixture that presented a Ultimate Tensile Strength of 830 MPa and a Hole Expansion Ratio exceeding 70%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.