A precision mass investigation of the neutron-rich titanium isotopes 51−55 Ti was performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N = 32 shell closure and the overall uncertainties of the 52−55 Ti mass values were significantly reduced. Our results conclusively establish the existence of weak shell effect at N = 32, narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N = 32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned Multiple-Reflection Time-of-Flight Mass Spectrometer (MR-TOF-MS), substantiated by independent measurements from TITAN's Penning trap mass spectrometer.Atomic nuclei are highly complex quantum objects made of protons and neutrons. Despite the arduous efforts needed to disentangle specific effects from their many-body nature, the fine understanding of their structures provides key information to our knowledge of fundamental nuclear forces. One notable quantum behavior of bound nuclear matter is the formation of shell-like structures for each fermion group [1], as electrons do in atoms. Unlike for atomic shells, however, nuclear shells are known to vanish or move altogether as the number of protons or neutrons in the system changes [2]. Particular attention has been given to the emergence of strong shell effects among nuclides with 32 neutrons, pictured in a shell model framework as a full valence ν2p 3/2 orbital. Across most of the known nuclear chart, this orbital is energetically close to ν1f 5/2 , which prevents the appearance of shell signatures in energy observables. However, the excitation energies of the lowest 2 + states show a relative, but systematic, local increase below proton number Z = 24 [3]. This effect, characteristic of shell closures, has been attributed in shell model calculations to the weakening of attractive proton-neutron interactions between the ν1f 5/2 and π1f 7/2 orbitals as the latter empties, making the neutrons in the former orbital less bound [4,5]. Ab initio calculations are also extending their reach over this sector of the nuclear chart, yet no systematic investigation of the N = 32 isotones has been produced so far.