Results from a search for neutrinoless double-beta decay (0νββ) of ^{136}Xe are presented using the first year of data taken with the upgraded EXO-200 detector. Relative to previous searches by EXO-200, the energy resolution of the detector has been improved to σ/E=1.23%, the electric field in the drift region has been raised by 50%, and a system to suppress radon in the volume between the cryostat and lead shielding has been implemented. In addition, analysis techniques that improve topological discrimination between 0νββ and background events have been developed. Incorporating these hardware and analysis improvements, the median 90% confidence level 0νββ half-life sensitivity after combining with the full data set acquired before the upgrade has increased twofold to 3.7×10^{25} yr. No statistically significant evidence for 0νββ is observed, leading to a lower limit on the 0νββ half-life of 1.8×10^{25} yr at the 90% confidence level.
Atomic physics techniques for the determination of ground-state properties of radioactive isotopes are very sensitive and provide accurate masses, binding energies, Q-values, charge radii, spins, and electromagnetic moments. Many fields in nuclear physics benefit from these highly accurate numbers. They give insight into details of the nuclear structure for a better understanding of the underlying effective interactions, provide important input for studies of fundamental symmetries in physics, and help to understand the nucleosynthesis processes that are responsible for the observed chemical abundances in the Universe. Penning-trap and and storage-ring mass spectrometry as well as laser spectroscopy of radioactive nuclei have now been used for a long time but significant progress has been achieved in these fields within the last decade. The basic principles of laser spectroscopic investigations, Penning-trap and storage-ring mass measurements of short-lived nuclei are summarized and selected physics results are discussed. † going to cryogenic temperatures, or enhancing the induced signal by using higher charge states and/or longer accumulation times. Ideal applications for this method are mass measurements of super-heavy element (SHE) isotopes for nuclear structure studies as they are performed at SHIPTRAP [25,26]. SHE are produced in minuscule quantities, and typically have half-lives of hundreds of milliseconds to a few seconds. A proof-ofprinciple experiment is planned at the TRIGA reactor facility TRIGA-TRAP at Mainz University [27] and applications for HITRAP with highly charged ions are foreseen [28]. Requirements for Mass Measurements of Radioactive IonsThe specific requirements for the mass measurements of radioactive ions stem from the parameters of the ions themselves. For example the required sensitivity (depending on the production yield) and measurement speed (depending on the half-life) as well as the envisaged application which dictates the required precision. In order to be meaningful, all measurements should deliver reliable data, hence precise and accurate. The physics requirements can be categorized with the corresponding relative precision as follows:• nuclear structure, δm/m ≈ 1 × 10 −7• nuclear astrophysics, δm/m ≈ 1 × 10 −7/−8 • test of fundamental symmetries, neutrino physics, δm/m ≈ 1 × 10 −8/−9
The nuclear charge radius of 11Li has been determined for the first time by high-precision laser spectroscopy. On-line measurements at TRIUMF-ISAC yielded a 7Li-11Li isotope shift (IS) of 25 101.23(13) MHz for the Doppler-free [FORMULA: SEE TEXT]transition. IS accuracy for all other bound Li isotopes was also improved. Differences from calculated mass-based IS yield values for change in charge radius along the isotope chain. The charge radius decreases monotonically from 6Li to 9Li, and then increases from 2.217(35) to 2.467(37) fm for 11Li. This is compared to various models, and it is found that a combination of halo neutron correlation and intrinsic core excitation best reproduces the experimental results.
A precision mass investigation of the neutron-rich titanium isotopes 51−55 Ti was performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N = 32 shell closure and the overall uncertainties of the 52−55 Ti mass values were significantly reduced. Our results conclusively establish the existence of weak shell effect at N = 32, narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N = 32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned Multiple-Reflection Time-of-Flight Mass Spectrometer (MR-TOF-MS), substantiated by independent measurements from TITAN's Penning trap mass spectrometer.Atomic nuclei are highly complex quantum objects made of protons and neutrons. Despite the arduous efforts needed to disentangle specific effects from their many-body nature, the fine understanding of their structures provides key information to our knowledge of fundamental nuclear forces. One notable quantum behavior of bound nuclear matter is the formation of shell-like structures for each fermion group [1], as electrons do in atoms. Unlike for atomic shells, however, nuclear shells are known to vanish or move altogether as the number of protons or neutrons in the system changes [2]. Particular attention has been given to the emergence of strong shell effects among nuclides with 32 neutrons, pictured in a shell model framework as a full valence ν2p 3/2 orbital. Across most of the known nuclear chart, this orbital is energetically close to ν1f 5/2 , which prevents the appearance of shell signatures in energy observables. However, the excitation energies of the lowest 2 + states show a relative, but systematic, local increase below proton number Z = 24 [3]. This effect, characteristic of shell closures, has been attributed in shell model calculations to the weakening of attractive proton-neutron interactions between the ν1f 5/2 and π1f 7/2 orbitals as the latter empties, making the neutrons in the former orbital less bound [4,5]. Ab initio calculations are also extending their reach over this sector of the nuclear chart, yet no systematic investigation of the N = 32 isotones has been produced so far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.