Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. This paper investigates bright quantum-matter-wave solitons beyond the Gross-Pitaevskii equation (GPE). As proposals for interferometry and creating nonlocal quantum superpositions have been formed, it has become necessary to investigate effects not present in mean-field models. We investigate the effect of harmonic confinement on the internal degrees of freedom, as the ratio of zero-point harmonic oscillator length to classical soliton length, for different numbers of atoms. We derive a first-order energy correction for the addition of a harmonic potential to the many-body wave function and use this to create a variational technique based on energy minimization of this wave function for an arbitrary number of atoms, and include numerics based on diagonalization of the Hamiltonian in a basis of harmonic oscillator Fock states. Finally we compare agreement between a Hartree product ground state and the Bethe ansatz solution with a Gaussian envelope localizing the center of mass and show a region of good agreement.