Past studies focused on proposing new materials for batteries components, state of health (SOH) prediction, thermal design, equivalent circuit modeling, and so on. Those studies have been implemented on individual basis on a single battery or battery pack. However, there is hardly any research found that encompasses all the multidisciplinary aspects (such as materials, SOH, intelligent configuration [assembly], thermal design, mechanical safety, and recycling of materials and pack) simultaneously for the battery pack design of electric vehicles. This research article proposes a synthetic methodology for an advanced design of battery pack and its components by incorporating optimal scenario of materials selection for battery electrodes, SOH estimation, configurations (assembly) of cells, thermal (air and liquid cooling) design, battery pack casing mechanical safety, and recycling aspects of battery and battery pack. The problem is divided into the several parts and methodology for each is proposed. Cumulative advantages of the methodology with six future critical directions are discussed in the end.