The Medieval Climate Anomaly (MCA) is a preindustrial phase of pronounced natural climate variability with a core period from 1000 to 1200 CE. The paper presents a synthesis that integrates palaeotemperature records from the Greater Mediterranean Region encompassing the past 1,500 years based on multiproxy data from 79 published land and marine sites. MCA warming dominated the Western Mediterranean (Iberia, NW Africa) as well as the northern land areas of the Central and Eastern Mediterranean region. MCA cooling prevailed in the Canary Current Upwelling System, southern Levant, and some sea areas of the Central and Eastern Mediterranean. Previous palaeoreconstructions suggest persistent positive Atlantic Multidecadal Oscillation (AMO+) and North Atlantic Oscillation (NAO+) conditions during the MCA, while the Little Ice Age was dominated by an AMO− and NAO− regime. During the past 150 years, AMO+ conditions are typically associated with warming episodes in the Mediterranean area. A similar relationship appears to have also been established during the MCA as the majority of all Mediterranean land sites experienced warm climate conditions. In contrast, the NAO typically leads to a characteristic west‐east temperature dipole pattern in the basin, as documented for the last decades. During NAO+ conditions the Western Mediterranean is generally warm (and dry), while large parts of the Central and Eastern Mediterranean are cold. Similar trends seem to have been developed during the MCA when the NAO+ regime led to consistent warming in the Western Mediterranean, while a significant number of sites with MCA cooling existed in the Central and Eastern Mediterranean.