This comprehensive review explores the utilization of chiral stationary phases (CSPs) in the context of single-column simultaneous chiral–achiral high-performance liquid chromatography (HPLC) separation methods. While CSPs have traditionally been pivotal for enantioselective drug analysis, contemporary CSPs often exhibit notable chemoselective properties. Consequently, there is a discernible trend towards the development of methodologies that enable simultaneous enantio- and chemoselective separations utilizing a single CSP-based chromatographic column. This review provides an exhaustive overview of reported HPLC methods in this domain, with a focus on four major CSP types: cyclodextrin-, glycopeptide antibiotic-, protein-, and polysaccharide-based CSPs. This article delves into the diverse applications of CSPs, encompassing various chromatographic modes such as normal phase (NP), reverse phase (RP), and polar organic (PO). This review critically discusses method development, emphasizing the additional chemoselective separation mechanisms of CSPs. It also explores possibilities for method optimization and development, concluding with future perspectives on this evolving field. Despite the inherent challenges in understanding the retention mechanisms involved in chemoselective separations, this review highlights promising trends and anticipates a growing number of simultaneous enantio- and chemoselective methods in pharmaceutical analyses, pharmacokinetic studies, and environmental sample determinations.