Understanding and targeting functional RNA structures towards treatment of coronavirus infection can help us to prepare for novel variants of SARS-CoV-2 (the virus causing COVID-19), and any other coronaviruses that could emerge via human-to-human transmission or potential zoonotic (inter-species) events. Leveraging the fact that all coronaviruses use a mechanism known as −1 programmed ribosomal frameshifting (−1 PRF) to replicate, we apply algorithms to predict the most energetically favourable secondary structures (each nucleotide involved in at most one pairing) that may be involved in regulating the −1 PRF event in coronaviruses, especially SARS-CoV-2. We compute previously unknown most stable structure predictions for the frameshift site of coronaviruses via hierarchical folding, a biologically motivated framework where initial non-crossing structure folds first, followed by subsequent, possibly crossing (pseudoknotted), structures. Using mutual information from 181 coronavirus sequences, in conjunction with the algorithm KnotAli, we compute secondary structure predictions for the frameshift site of different coronaviruses. We then utilize the Shapify algorithm to obtain most stable SARS-CoV-2 secondary structure predictions guided by frameshift sequence-specific and genome-wide experimental data. We build on our previous secondary structure investigation of the singular SARS-CoV-2 68 nt frameshift element sequence, by using Shapify to obtain predictions for 132 extended sequences and including covariation information. Previous investigations have not applied hierarchical folding to extended length SARS-CoV-2 frameshift sequences. By doing so, we simulate the effects of ribosome interaction with the frameshift site, providing insight to biological function. We contribute in-depth discussion to contextualize secondary structure dual-graph motifs for SARS-CoV-2, highlighting the energetic stability of the previously identified 3_8 motif alongside the known dominant 3_3 and 3_6 (native-type) −1 PRF structures. Using a combination of thermodynamic methods and sequence covariation, our novel predictions suggest function of the attenuator hairpin via previously unknown pseudoknotted base pairing. While certain initial RNA folding is consistent, other pseudoknotted base pairs form which indicate potential conformational switching between the two structures.