RNA kissing complexes are essential for genomic RNA dimerization and regulation of gene expression, and their structures and stability are critical to their biological functions. In this work, we used our previously developed coarse-grained model with an implicit structure-based electrostatic potential to predict three-dimensional (3D) structures and stability of RNA kissing complexes in salt solutions. For extensive RNA kissing complexes, our model shows great reliability in predicting 3D structures from their sequences, and our additional predictions indicate that the model can capture the dependence of 3D structures of RNA kissing complexes on monovalent/divalent ion concentrations. Moreover, the comparisons with extensive experimental data show that the model can make reliable predictions on the stability for various RNA kissing complexes over wide ranges of monovalent/divalent ion concentrations. Notably, for RNA kissing complexes, our further analyses show the important contribution of coaxial stacking to the 3D structures and stronger stability than the corresponding kissing-interface duplexes at high salts. Furthermore, our comprehensive analyses for RNA kissing complexes reveal that the thermally folding pathway for a complex sequence is mainly determined by the relative stability of two possible folded states of kissing complex and extended duplex, which can be significantly modulated by its sequence.
Structure evaluation is critical to in silico 3-dimensional structure predictions for biomacromolecules such as proteins and RNAs. For proteins, structure evaluation has been paid attention over three decades along with protein folding problem, and statistical potentials have been shown to be effective and efficient in protein structure prediction and evaluation. In recent two decades, RNA folding problem has attracted much attention and several statistical potentials have been developed for RNA structure evaluation, partially with the aid of the progress in protein structure prediction. In this review, we will firstly give a brief overview on the existing statistical potentials for protein structure evaluation. Afterwards, we will introduce the recently developed statistical potentials for RNA structure evaluation. Finally, we will emphasize the perspective on developing new statistical potentials for RNAs in the near future.
Knowledge-based statistical potentials are very important for RNA 3-dimensional (3D) structure prediction and evaluation. In recent years, various coarse-grained (CG) and all-atom models have been developed for predicting RNA 3D structures, while there is still lack of reliable CG statistical potentials not only for CG structure evaluation but also for all-atom structure evaluation at high efficiency. In this work, we have developed a series of residue-separation-based CG statistical potentials at different CG levels for RNA 3D structure evaluation, namely cgRNASP, which is composed of long-ranged and short-ranged interactions by residue separation. Compared with the newly developed all-atom rsRNASP, the short-ranged interaction in cgRNASP was involved more subtly and completely. Our examinations show that, the performance of cgRNASP varies with CG levels and compared with rsRNASP, cgRNASP has similarly good performance for extensive types of test datasets and can have slightly better performance for the realistic dataset—RNA-Puzzles dataset. Furthermore, cgRNASP is strikingly more efficient than all-atom statistical potentials/scoring functions, and can be apparently superior to other all-atom statistical potentials and scoring functions trained from neural networks for the RNA-Puzzles dataset. cgRNASP is available at https://github.com/Tan-group/cgRNASP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.